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THE BLASIUS EQUATION

WITH THREE-POINT BOUNDARY CONDITICNS+

Iuigi G. Napolitano*

Summary

The occurrence of the Blasius equation subject to three-point boundary
conditions in a variety of problems involving the mixing of two uniform
streams is shown. A solution of this equation, with the third boundary con-
dition applied to the Blasius function itself, is presented by way of a
series in terms of the ratio A = 21:33 where the ui's are the inviscid
streams'! velocities. The first three ! approximations are explicitly
expressed in terms of the repeated integrals of the complementary error
funection (inerfc11) and of the repeated integrals of the square of the
functions i‘erfc M. Pertinent formulae permitting the rapid evaluation of

these functions for positive and negative values of the independent variable

are developed.

+ This research was supported by the National Aeronautics Committee,
under Contract Naw-6480

* Research Group Leader




2 Symbols

cp Specific heat

f Blasius function (see Eq. 8)
P Static pressure

u,v Velocity components

X,y Cartesian coordinates

Pr Prandtl number

R Gas constant

) Non-dimensional stagnation enthalpy function (see Eq. 2)
T Absolute teﬁperature

Ts Reference temperature

U (u1+u2)/2

n, ¢ Stewartson variables (see Eq.4)

t Blasius variable (see Eq. 8)
A u_-u

(u)-,)/u)
V) Viscosity
vlo Reference kinematic viscosity
p Density
pTo Reference density

- +

A (u)-u,) fu

Subscripts ()1 and () refer to the two inviscid uniform free streams
2




Introduction

The solution of the Blasius equation with three-point boundary conditions
has per se a considerable academic interest. In addition, tabulated values
of the Blasius function can be used to advantage in a variety of problems
connected with mixing phenomena wherein the subject equation occurs.

The first and most immediate step in the study of problems connected with
or influenced by the interacting of streams is the solution of the mixing of
two uniform streams in the absence of axial pressure gradients. This problem
can nearly always be reduced to the solution of the Blasius equation subject
to three.point boundary conditions, the only exception being the case of com-
pressible turbulent mixing.

In the case of laminar incompressible mixing of two uniform streams the
reducibility of the basic Prandtl equations to the Blasius equations with
the pertinent boundary conditions was first shown by GBrtlerl. It seems,
however, that there are some material errors in the solution given by that
author (see, for instance, Ref. 2). The third boundary condition imposed by
Gortler is different from the one imposed in the present report. This fact
could be exploited in carrying out an interesting investigation as to the
general influence of this third boundary condition on the solution of mixing
problems. It is well known, in fact, that they exhibit a certain indeterminacy
in the boundary condition concerning the y-component of the ;elocity since this
component is not known, a priori, anywhere in the flow field. Several hypothe-

sis have been suggested as to the bearing of this indeterminacy on the orienta-
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tion of the wake and on the velocity profiles. An investigation was
carried out by Kuethe3 for the turbulent incompressible mixing, but
nothing has ever been done for the compressible case.

The present author has recently shownu that the laminar mixing of
two uniform streams can be reduced to the solution of the Blasius
equation subject to three-point boundary conditions also in the com-
pressible case. A solution of the pertinent heat-conduction like
equation has been already given by Pai2 by way of an iterative process
to be performed for each case under consideration. The present approach
will introduce some obvious and essential advantages. Once the tabula-
tion of the Blasius function is available, time consuming iteration pro-
cesses are eliminated completely. The solution will be given once and
for all and all the investigations connected with the laminar mixing of
two compressible streams will be readily dealt with. Thus, for instance,
the effects of the temperatures of the streams on the mixing character-
istics are determined very quickly by means of straightforward manipula-
tions of the tabulated values.

As the author has shown elsewhereS, the turbulent incompressible mix-
ing of two uniform streams can also be reduced to the Blasius equation.
Thus its solution will remove the discontinuities in the velocity profiles
curvature which exist in the solutions previously given. It is well known,
in fact, that in the total differential equation, so far used to describe

the turbulent incompressible mixing, the boundary conditions cannot be




satisfied asymptotically since a uniform inviscid flow is not a solution
of the differential equation itself.

The usefulness of the solution of the subject Blasius egquation is
not limited to these cases only. One more‘application of the results
is to be found in problems of mixing of shear flows. As it will be
detailed in forthcoming reports, a solution for these problems can be
achieved by linearizing with respect to the vorticities of the two inter-
acting streams. It apparently follows that the zero-order solution (corres-
vonding to zero vorticity in the inviscid streams) will be described by
the Blasius equation whereas the coefficients of the equation for the first
order solution will be functions of the Blasius function itself. Rapid
and accurate solution of this problem, as needed in the study of the
stability of this type of flow, makes once again desirable the access-
ibility of tabulated values of the pertinent Blasius function.

In the present report a brief derivation of the Blasius equation

R

with three-point boundary conditions will be given for tha2 case of laminar

compressible mixing. Its solution is subsequently presented and discus

Tid e

W

In the course of the mathematical treatment there often apreared successive

integrals of the complementary error function (symbolically indicated by
inerfc1]) and the successive integrals of the square of the functions
inerfc 7y . The values of inerch\ have been tabulated by Kayeé, for
positive values of the argument, up to n = 11. The formulae necesz=zary ta

.n . o
comnute i erfe(-T) are developed in Appendix A. New and useful recurceace




formulae permitting the evaluation of the successive integrals of the
functions ierfe m are derived in Appendix B.

This work is part of a program of study on mixing phenomena carried
out at the Polytechnic Institute of Brooklyn under the supervision of
Professor Antonio Ferri.

The research was sponsored by and conducted with the financial

assistance of the National Advisory Committee for Aeronautics.

Derivation of the Blasius Equation

A derivation of the Blasius equation from the basic equations describ-
ing the compressible laminar mixing of two uniform streams is given in this
section.

The streams are assumed infinite and the simplifications Pr = 1;
ey = const. and (pu)y = 0 are accepted.

Under these hypotheses the basic equations, to the usual boundary layer

approximation, read:

P uu_ + = (
w +pvu uuy)y

P =0

y

— 1

(pu)x+(pv)y =0 (1)
pus, + vay = QLSy)y

P =pPRT

b o= B C




The function:‘S is defined by
S = (H/Hl) -1 (2)

and the assumed law of variation of the viscosity with absolute
temperature is the well known Chapman formula (see Ref. 7). As it
was suggested by this author the constant C can be determined in
such a way that the more exact Sutherland law can be satisfied in
the region of low energy.

The boundary conditions to be applied to the system of BEgs. (1)

are:

lim u=u lim S=o
y—>+ oo 1 ¥y >+ © . 3)
1im u=nu 1im s=5,= (HZ/HI)-I

y—>- o 2 y - oo

These equations express the smooth joining of the dissipative
region with the two inviscid streams. The third boundary condition
necessary for the uniqueness of the solution will be given later.

The Stewartson transfonmation8 is first applied in a slightly
modified form which takes into account the assumed law of variation
of the viscosity with the absolute temperature. The Stewartson
variables £ and m are defined, in this particular case, by the

identities:




dt = cax

Q.
3
it

(p/plo'\/vlo> dy ()

With these new variables the momentum and energy equations become,

respectively (see Ref. 9, for instance):

Wﬂwng-wgwﬂﬂ = wﬂﬂﬂ (5)

VoSt = VeSy = S

wherein the stream function W is defined by:

= iy - = " v 6
wy o u/ plkolo \llx pv/p‘lc;/vlo (6)

The boundary conditions (3) in turn read:

L ¥, = u lim S = 0
N + oo n—> + 00
Lim \|;=u2 1im S = S _
£
m —=2>»-o00 T T2 - @

To reduce the system of Egs. (5) witn the boundary conditions (7)

to a system of ordinary differential equations ,a further change of
dependent and independent variables g performed and the existence

of similar solutions for the subject problem is postulated.




The new variables are defined by:
1
£(8) =w/2(zul)’
X ,
§='nu1%/2if | (8)
s = s()
' 10
After the due transformations are performed, Egs. (5) become :

fri1e 2FF11 =

|
o

S't + 2f5!

H
(o]

(9)

where primes indicate differentiation with respect to the variable t.

The boundary conditions are:

lim f* =1 1lim S = 0
{ >+ o {—=>+ o
lim f' = 1= 1im's=s2
t >- o (= - ©
where
u, - u
A L2
Uy

The energy equation admits of the simple solutionloz
s = (1-f') sz/k (10)

The momentum equation appears in the form of the well known Blasius

equation.

9.
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At this point the necessity of imposing a third boundary condition
for the momentum equation cannot be ignored any longer. The arbitrari-
ness connected with it is well known. It descends from the fact that
the y-component of the velocity is not known a priori anywhere in the
flow region nor can it be reasonably anticipated on any physical back=-
ground. For the incompressible case it has been shown that this arbitrari-
ness corresponds to the arbitrariness in the wake orientation only.

The third boundary condition herein imposed reads:

£(d) = 0.

It will be noted that GZ)'I“I:ler:L solved the same basic equation with a
third boundary condition stipulating that f£'(0) = 0. Since, however,
there se;m to be some mistakes in its original solution, in Appendix D
the solution with the Gortler boundary condition will be summarily re-
derived and subsequently expressed in terms of the values tabulated in

this report.

Solution of the Blasius Equation

The equation to be solved is:
Fror 4 2ff10 = 0 (11)
subject to the three-point boundary conditions:

lim f' =1 lim £' = 1- A £(0) =0
(—>+ oo t—>- oo (12)
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It is readily seen, both from a mathemztical and a physical voint of

view, that in the lirmiting case of A = 0, =q. (11) admits of the particular

s>luticn £ ={ vwhich correspond to tve streams of equal vs=locities with no
mixing. As A increases the mixing region increases and the function £Y, wvwro-

porticnal tc the velocity, differs from the value 1 which it tskes on for

zero mixing. Accordirgly, a series solution of ug. (11) in ascending powers
of A 1is sought.

let then:

£ (12)

Substituting Zg. (13) into #q. (11) and prouping terms in the like powers

of A one obtzins the following system of ecuaticns:

fIOIV

-
which are

procedure

+ Zfofé =0

+ 2 frv 4 28 210 = 0 (13a)
o1 o

+ 2f £ 4 20 M0+ 2f £ = 0
o2 i1 20

+2ff"+?ff‘ll+2fﬁ‘ll+:7fﬁfl':0
o3 12 21 30

to be sztisfied by the succsuiive te-ms of the series. an tnaloyous

applied tc eguztions (12) gives:

1lim f' =1
o
+
{t—=- co
lim f'=0 1lim SYo= T Y
1 1 (ikia)
>4+ oo t—=- oo



12.

lim fro=0 (12 2); f()=0 (120) (140)
1 1

(=2

as the boundary conditions to be satisfied by the system of Egs. (13).
As it was previously said, the zero approximation corresponds to

zero mixing and the relative equation with the pertinent boundary con-

ditions is satisfied by fo =(. Accordingly, the system of equations

(13) is rewritten as:

tet 1t =
farr+ 2010 =0 (15a)
Froiv 4 28 £11 = f1r1 R ( (15b)
i i 1 1 ¢)
where the Ri( {) are functions at most, of the (i-1)th solution. In
particular, for instance:
R(L) = -2ry (16)
Ry(L) = -2 [ (egrry/eyn) + 1, ]
and, more generally:
i-1
Ri = =2 z £ £ro /e
h=o h+l i-h 1

Equation (15a) with the boundary condition (14a) admits of the solution:

¢ t
1 / /-b
£ = = dt e db-1t (17)
o 2

(o)

-
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where the general solution of Zg. (15b) is

23
- dat eFab | r(a)qa+c dat | ePab+
i i 3 1,1 .
"o o] o o)

02,i§‘+ Cj.i (18)

where the three arbitrary constants C_ , 02 . and 03 5 have to be

s 1 ’

determined from the boundary conditions (14b). From the third one

it is inferred that C3 .= 0. Differentiating Zg. (18) once and apply-
i

ing the boundary conditions (14) yield:

[ R (a) da + ~L§._ cl'.1 + Cz,i =0 (19)

_;_/‘b db R(a)da-“/lté_l_+021=o
l\/_' 1 P »

from which the constants are determined to be

+ oo
NN
+
Cl,i "/_ / -t db/R(a) da (

and the required solution assumes the simple form:

Bl

f

i

c
1,i

:llF—'

0)

1Ay}

C2,i -

|
o |§|
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¢ 00

— 1 B2
f =Jm C.  f - =B dt . d 21
. W L e db | R,(a) da (21)

Successive approximations to the solution f can thus be readily deter-
mined to any order.

The task is even more simplified if Eq. (21) is expressed in terms
of the complementary error function and of related functions. 1In
Appendix C the first three approximations are expressed in terms of:

1) The repeated integrals of the error function, defined as

oo
.n ,n-1
i erfems= i erfc t dt (22)
n
and
2) The repeated integrals of the square of these functions,
defined as
00
mn \/f m-1 n
j ierfen = j T i erfctdt (23)
L
with
3%" erfeny =[1i" erfe )P (24)

n 6

The functions i erfec m have been tabulated up to n = 11 by Kaye
for positive values of the variable M . The functions in erfc(-m)
mn :
are shown in Appendix A. The functions j i erfc m can be likewise

expressed in terms of the functions 1" erfe TM. This is detailed in
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Appendix B wherein a recurrence formula for these functions is also
given. )

The first three approximations of the function f£'({) have been
computed to six significant figures, using the previously mentioned
relations. Values of f;(!)(i=l,2,3) are tabulated in Table I with
four significant figures. Tables II and III give the functions
fi(g) and f:,'L'(_t, )(i=1,2) with the same number of significant figures.
A plot of these functions is given in Figs. 1 through 6. To have an
idea of the convergency of the series given by Eg. (13) the following

functions
£1(1) =1 g
1
£12) Z 1 ang 4n2g
1 2
£13) o1 ans #2350 4 N30
1 2 3
yielding the first, second and third approximations to the velocity
profile have been computed for A = 0.,1; 0.2; 0.3; 0.4; 0.6; 0.8.
The results are plotted in Figs. 7 and 8. It appears that the first
two approximations are already sufficiently accurate for most practi-
cal purposes, the third one being needed only for valﬁes of A greater

than 0.5. As it was to be expected the involved approximations are

poorer in the low velocity regions.
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Conclusions

The Blasius equation subject to thre--roint boundary conditions is
shown to suitably describe all the cases of mixing of two uniform streams,
where turbulent comrressible mixing is the only exception. The solution
of this equation 1is presented by way of a series in terms of the ratio

\11 - u2

A= ———= vhere the u,'s are the inviscid streams' velocities.
u i
1
The third boundary condition is apnlic? to th: Blasius function itself
rather than to its first derivative.
The first three terms of the seriss are given explicitly in terms
. n
of the repeated integrals of the comnlementary error funztion (i erfe n)
and of the reveated integrals of the square of the successive integrazls
. m.n .
of the complementary error function (j i erfcm). Formalae relating
these functions to available tabulated values are developad.

The first three avproximations to the velocity profile are comouted
for several valuss of A. It apvears that tne series is rapidly couvargent.
The first two approximations »rove themselves to be sufficiently accarate
up to values of A of about 2.5.

Pertinent tabulated valuss are reporied with four significant

figures.
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APPENDIX A

The Errdr Function and Its Repeated Integrals

The fact that the solution of several problems leading to ex-
tended heat conduction type equations can be expressed very éimply
in terms of functions formed by repeated integration of the error
function was first recognized by Hartree. In his paperll he shows
some interesting properties and applications of the repeated integrals
of the error function. More recéntly, the question was taken up by
J. Kaye in dealing with heat transfer and mass transfer problems when
the boundary conditions are time dependentlz.- From his work stemmed
the necessity of tabulating the repeated integrals of the error function,
which he did6 up to the eleventh repeated intggral. The availability
of these tables proves vefy useful in the subject problem too, reducing
by a coﬁsiderable amount the necessary computations to determine the
successive approximation to the Blasius equation. However, since the
present range of the independent variable is + oo, - 00, it was
found necessary to extend the definition of these repeated integrals to
negative values of the independenp variable, To the author's knowledge,
these formulae have never béeh bresented. It was consequently felt
proper to give them, together with other forﬁuiae‘usefﬁl in transforming
Eqé, (18) and (21), in terms of the repeated integrals of the error

function,
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The error function is defined by:
N e
erfmn = 2 e at (A1)
J-zr
0

and the complement of the error function, erfc m , by:

-t?
erfen =1 - erfm = 2 e dt (A2)
T
v n

th .
The n repeated integral of erfc m is symbolically defined as:

Qo

1" erfem = v/ P ere t o at (n > 1) (A3)
M

with
o
i erfem = erfc m (AL)
The functions given by Eq. (A3) are tabulated, up to n=11, in Ref. 6 for
positive values of the varisble m,
n
It is of interest to extend the definition of i erfc m to

negative values of m as follows:

Qo

n-l
1% erfe (=m ) = / i erfc t ° dt (A5)

vy
and to see whether it is possible to express them as function of the

known tabulated values of il erfec m. To this purpose it is recalled




21.
that erfc m is an odd function and that consequently:
.0 .0
i” erfc (-m) =2 -1 erfen (A6)

Furthermore, consistent with the notation given in Eq. (A3), the first
derivative of the error function is defined by:

2 -7

- 9 (erfcm) = '1—l erfc= — e (A7)
dnm Ve
It is, apparently, an even function, so that:
i_1 erfc (-M) = i—l erfen (A8)

By repeated application of the following recurrence formulall, valid

forn = 1:
n .n-2 .n=1
2nierfcn=1i “erfcm - 2mMi erfcnm (A9)

it is then easily verified that the following general identity holds:
n n-h

ntl n
1 erfe (- ) =(-1) 1ierfen +2 I A+ 2-1 ]
h=o0

- _;.1_‘ i erfc(o) {A10)

In deriving Eq. (A10) it has been taken into account that Eq. (A9)

yields, form = O:



22,
n .n=2
2n 1 erfc(o) = i “erfc(o)

or

1

n
i erfec(o) = —————
n.ln)!

2 ('é'

Eq. (A10) gives the required relation between the repeated integrals
of the error function for negative and positive values of the independ-
ent variables. Thus, for instance, the first three integrals in the

negative range of m are simply expressed by:

i erfe(-m) = 2m + i erfcm
erfe(-n ) = -1% erfc m+ n2 + 212 erfc(o) (A11)
Parfe(-m) = 13 erfe N + 2niferfec(o) +n3/3
Apparently these repeated integrals will not conv<.:. > as 1 —>- 00.
Their asymptotic behavior, for i-'q % large, is:
n _ + - 2 n n—h
i erfe(-m) < (-1 2. e+ 2 3 [(RGL)
. »\/TC (27]) h=o0 2
-2, 1" Perte(o) (a12)
APPENDIX B

Repeated Integrals of the Functions (inerfcn)a

In many problems described by extended heat conduction type equa-

tions, there often occur functions such as

00
/ / - (:’Lnerfc'r])a dn dmdn —-—d.n
N . 1 23 m
'nl 'ﬂg 'ﬂ U™
both in the explicit analytic expression of the solution and in the

evaluation of integrals of the type:
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THE BLASIUS EQUATION WITH THREE-POINT BOUNDARY CONDITIONS*

BY
L. G. NAPOLITANO

Polytechnic Institute of Brooklyn

Abstract. The Blasius equation subject to three-point boundary conditions, de-
scribing the interaction between two parallel streams, is solved by way of a series in
terms of ascending powers of the ratio A = (u, — u,)/u, , where the ;s are the outer
streams’ velocities.

The first three terms of the series are analytically expressed in terms of the repeated
integrals of the complementary error function (<* erfc 5) and of the repeated integrals
of the square of the successive integrals of the complementary error function (§7¢" erfc ).
These functions often appear in problems leading to extended heat-conduction type of
equations. A recurrence formula for j7¢" erfc 7 is established and formulae relating the
functions 7" erfe (—n) and j"7" erfc (&=9) to available tabulated values of the functions
v erfc (3) are derived.

The first three approximations to the Blasius function and to its first two derivatives
are also presented in tabulated form with four significant figures. Test on the convergence
of the series has been made by comparison with some exact solutions obtained by high
speed computing machine. The comparison, extended to the physically essential quan-
tities, shows that:

(1) The Blasius function itself is slightly less accurate than its second and first

derivatives. '

(2) Two terms of the series for A up to 0.5 and three terms for A up to 0.7 yield
extremely accurate results. The errors in the first two derivatives of the Blasius
functions are always contained within less than one per cent.

1. Introduction. The solution of the Blasius equation with three-point boundary
conditions has per se a considerable academic interest. The availability of closed form
solution has, however, become a practical necessity in view of the recent findings which
have shown the essential and unique role played by this equation in isobaric mixing
flows. It can indeed be said that all the types of plane two-dimensional interactions
between two streams are governed by the Blasius equation with three-point boundary
conditions.

The reducibility of the basic Prandtl equations to the Blasius equation with pertinent
boundary conditions was first shown by Gortler [1]** for the laminar incompressible
mixing of uniform streams and, subsequently {2], for the turbulent case also. The present
author showed [3] that the same happens for the compressible laminar case. A recent
investigation by the present author {4] has also brought forth some evidence of an
empirical correlation existing between turbulent and laminar compressible mixing.
It was found that, under the assumption of a unitary turbulent Prandtl number, the
velocity profiles are considerably independent of Mach numbers and density ratio and

*Received December 19, 1957. This work was sponsored in part by the NACA under Contract
NAw 6480. Some of the results have appeared in Ref. [9] which was issued in a limited number of copies
not for circulation.

**Numbers in brackets refer to the bibliography at the end of the paper.
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can therefore be deduced from the solution of the Blasius equation. This statement has
an even larger implication insofar as it applies whenever the density ratio can be given
a parabolic dependence on the velocity ratio. Thus the field of application of the Blasius
function is widened to include a large variety of interactions between streams of different
gases [5]. Solutions of the Blasius equation are furthermore needed in problems of laminar
and turbulent mixing of non-uniform constant vorticity streams. These problems are
solved by means of a series solution in terms of the “vorticity numbers”’: the zeroth
order terms is the Blasius function and the coefficient of the equations for the higher
order terms are all functions of the Blasius function and its derivatives [6].

The present paper is mainly concerned with the solution of the Blasius equation and
not, with its derivation for which reference is made to the pertinent literature. The solu-
tion is obtained as a series in terms of the parameter N = (u; — u,)/u, . The first three
terms (up to A\*) are given in explicit closed form and in tabulated forms. Owing to the
complicated nature of the terms of the series, its convergence could not be formally
established. The results of the present method are, however, compared with some exact
solutions obtained by high speed computing machine ealculations.

In the course of the mathematical treatment there often appeared successive repeated
integrals of the complementary error function (symbolically indicated by <" erfe #)
and successive repeated integrals of the square of the functions " erfc 5. As this feature
is common to a large variety of physical problems which can be reduced to extended heat
conduction type of equations, a summary study of those functions is presented in Appen-
dixes A and B. Formulae necessary to compute the values of 7" erfe (—7) in terms of
the already tabulated values (up to n = 11) of " erfc 4 are developed. A recurrence
formula is established for the funetions 77" erfe n defined as the successive integrals
of the functions (3" erfc 7)®. Finally relationships giving the functions ;™" crfe 7 in
terms of the functions " erfe % are derived which afford a rapid evaluation of the func-
tions themselves.

This work is part of a program of investigation on mixing phenomena carried out at
the Polytechnic Institute of Brooklyn under the supervision of Prof. Antonio Ferri.

2. Solution of the Blasius equation. The equation to be solved is

7+ 2" =0 €]
and it is subject to the following three-point bound:ry conditions

imf =1 limff=1-Xx f0O =0 0<r<I1. @)

{—+tw -

Quantities related to the mixing of two streams are expressible in terms of the function
f(¢) and its derivatives as follows

v = 20 D),

¢ = %y<g)4w + k,

w = uf),

o = ()" - vr - 11

®3)
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In these equations x and y are space coordinates whose origin is taken to be at the
point, where the interaction begins, u and v are the corresponding velocity components,
y is the stream function defined by u = ¢, ;» = —y, and » is the kinematic viscosity coefli-
cient. The quantity % is an arbitrary constant whose presence follows from an interesting
property of the Prandtl boundary layer equations. These equations are invariant under
the transformation

y + s(x),

I, = x,

G

wlx, y) = ulz, , y), @)

ds
U(I’ y) = vl(Il 3y1) - u(xl ’ yl) (.JT’E-

Asymptotic boundary conditions on the x-component of the velocity remain also
unchanged while boundary conditions on the y-component are changed. The mathe-
matical implication of this fact lies in the freedom of choosing arbitrarily the third
boundary condition for the Blasius equation. The physical implication is the resulting
indeterminacy of the wake orientation insofar as the transformation back into the physical
plane cannot be performed unless k is known. Additional physical considerations, such
as the one suggested by von Kirmdan that a free wake be acted upon by a zero resultant
force in the y-direction, will uniquely determine this constant &k and thus will fix the
orientation of the wake. The solution herein presented relates to a wake whose streamline

through the origin satisfies the equation y = —2k(vz/u,)"".
The following series solution of Eq. (1) in ascending powers of A is sought
f= Z )\if ‘- (5)

Equation (5) is substituted into Eq. (1) and the coefficients of the successive powers
of \ are set equal to zero. The zeroth order approximation must satisfy the following
equation

fo" + 2fofs’ = (6)
with
Hm ff = 1,
e M
fo(O) = 0.

The pertinent solution is fo = ¢ and it corresponds, physically, to zero mixing. The
equation for the first approximation is, by taking the zeroth order solution into account

=0 @)
with

lim f{ =0, lim f{= —1,
foore fme ()]
£(0) = 0.
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The solution of Eq. (8) is

fo=@™” f: dt j; e db — i¢. (10)
Finally, the ¢th approximation (¢ > 2) must satisfy the equation
firr + 2ef = f'R(D), (1
where the R.({) are functions, at most, of the (i — 1)th solution and are given by
R = =2 5 fuafa/i (12

Equation (11) is subject to the boundary conditions
lim f/(0) =0, f(0)=0, (=2 (13)

o

and admits the solution

~t @ b
L=W%m—m”jwaWf&@w (14)
0 t 4
with

w©

C,.= —(r)_lf e db /b R.(a) da. (15)

Successive approximations to the solution f can thus be readily determined to any order.

The task is considerably simplified if Eq. (14) is expressed in terms of the comple-
mentary error function and of related functions. In this problem, indeed, as well as in
several other problems leading to extended heat-conduction type of equation, the solution
can be expressed rather simply in terms of the following functions

™ erfe n = f f f (erfe 1) dng -+~ dn.
n n2 M
™" erfe 7 = f f f (6" exfe n) dny -+ dun
7 Ma Mm

Ton(m) = f (" erfe &) - (" erfe t) dt.

Of these functions only the first ones, usually referred to as repeated integrals of the
complementary error function, have been studied. Hartree [7] has shown some of their
properties and applications and, more recently, Kaye {8] has tabulated them, up to the
eleventh repeated integral, for positive value of the argument.

The functions " erfe (—7) are considered in Appendix A wherein their expressions
in terms of the functions 1" erfe 4 and their asymptotic behavior are presented. A sum-
mary study of the functions ;" erfc 5 is given in Appendix B. Therein the existence of
a recurrence formula is proved and expressions relating the functions j™* erfc (£m)
and T,.(%n) to the repeated integrals of the error function are given.

If simplified notation such as

1" erfe n = 77,

™" erfe n = 770,
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are adopted, the first approximations to the function f can be given simple analytical
expressions as follows:

First approximation—

I

fr =3l — @77,
' fil=—%" = —}erdey,

!II = (T)—I/Q C—f’.

Second approximation—

NS IR BT RYC G S
fz = (167") E; t ] -+ 1[2 4] -+ 3 I:S (7r)1/2 ﬂ} y

=TI 3+ 107,

|
| V=@ W~ b+ ).

| TABLE 1
Blasius equation with three-point boundary conditions—V alues of f:

! S () H(=5) 1:(8) f(—=8) 18 fi(—1)
‘ 0.00 .0000 .0000 .0000 L0000 .0000 L0000
0.01 —.0050 .0050 .0004 —.0006 .0002 —.0002

0.02 —.0099 .0101 .0009 —.0009 .0004 —.0004

; 0.04 —.0195 0204 0017 —.0032 .0009 —.0009
| 0.06 —.0290 .0310 .0025 —.0034 .0013 —.0013
0.08 —.0382 .0418 .0032 —.0041 .0017 —.0018

0.10 —.0472 0528 .0038 —.0052 .0021 —.0023

0.12 —.0559 .0640 .0044 —.0065 .0025 —.0028

0.14 —.0645 .0755 .0050 —.0077 0029 —.0033

; 0.16 —.0728 .0872 .0054 —.0090 .0033 —.0038
| 0.18 — .0809 .0991 .0058 —.0104 0037 —.0043
0.20 — .0888 1112 .0063 —.0118 0041 —.0048

0.30 —.1250 .1750 .0078 —.0196 0058 —.0075

0.40 —.1560 .2440 .0075 —.0295 .0074 —.0104

0.50 —.1823 .3177 .0069 —.0381 .0085 —.0136

0.60 —.2041 .3959 .0056 —.0503 .0098 —.0171

0.70 —.2220 4779 .0037 —.0610 .0107 —.0209

0.80 —.2365 .5635 .0016 —.0705 0113 —.0250

) 0.90 —.2480 .6520 —.0005 —.0778 .0018 —.0295
1.00 —.2570 .7430 —.0024 — .0867 0120 —.0342

K 1.20 —.2691 .9309 —.0060 — 1017 .0122 —.0437
1.40 —.2758 1.1243 —.0085 —.1126 0121 —.0529
1.60 —.2792 1.3208 — 0102 —.1199 .0119 — 0609

1.80 — .2809 1.5191 —.0112 —.1238 0117 —.0674

2.00 — .2816 1.7184 —.0117 —.1268 .0116 —.0720

2.20 — 2819 1.9181 — 0119 —.1280 .0115 —.0750

2.40 —.2820 2.1189 —.0120 —.1286 0115 —.0765

2.60 — .2821 2.3179 —.0121 —.1288 L0115 —.0771

2.80 — .282] 2.5179 —.0121 —.1289 .0115 —.0773

3.00 —.2821 2.7179 —.0121 —.1289 .0115 —.0773
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Third approximation—

fo = Fs + Fo(— =)ff,

-0 2 __
Fu = —’—[1+—§———1-+<f)2+g(

2r

1.2
2

+ {12077 — @] -

[Vol. XVI, No. 4

1

,L e
Z(:Sm + muz

—;—2[—-0 ~£43 }+if:[i<t)13dt,

= Fy(= ) + &)"”e'“[i + &

2w

+ (W)2m < + z)

—ﬂf—n—@w%%-gﬁ]

TABLE 2

Blasius equalwn with three- pomt boundarJ Londlttons—Valuea of j’

¢ Jie) fi(—
0.0 — 5000 — 5000
L0l — . 4943 — .H0b6
02 — 4887 —.5113
.04 — 4774 — 5225
.06 —.4662 —.5338
.08 — 4550 — 5450
10 —.4438 — .5562
12 —.4326 — 5674
.14 — 4215 —.5785
.16 —.4105 — 5805
.18 —.3995 — 6005
.20 — . 3886 —.6113
.30 —.3357 — 6643
40 —.2858 —.7142
.50 —.2397 — 7602
.60 —.1981 — 8019
.70 —.1611 —~.8389
.80 — 1289 — 8710
.90 —.1015 — . 89841
1.00 — . 0786 — 0213
.20 — 0448 — 9551
.40 —.0238 — 9761
.60 —.0118 —0.9882
.80 —.0054 —0.9945
2.00 —.0023 —0.9977
2.20 — 0009 —0.9991
2.40 — 0003 —0.9996
2.60 —.0001 —0.9999
2.80 .0000 —1.0000

3.00 .0000 —1.0000

() f(=¢) f3$)
L0454 0454 L0222
L0440 L0168 0220
L0426 L0482 L0218
L0398 L0510 L0215
L0370 L0538 0211
.0312 L0566 L0208
0314 L0594 L0204
L0287 .0621 .0201
.0260 L0648 0197
L0231 L0674 0193
L0218 L0700 L0190
0183 L0725 0186
.0080 L0839 L0166
—.0033 .0929 0146
— . 0109 L0990 L0123
—.0163 21018 _0098
—.0195 .1014 0075
—.0210 .0980 0052
—.0209 .0920 L0034
—.0197 L0841 0018
—.0154 L0648 L0000
— 0105 L0451 —.0010
— 0064 0285 —.0012
—.0035 0123 — 0008
—.0017 .0086 —.0004
—.0008 L0041 — .0002
-—.0003 L0018 —.0001
—.0001 .0007 —.0001

.0000 .0003 .0000

.0000 .0001 .0000
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TABLE 3

Blasius equation with three-point boundary conditions—V alues of i’

¢ 1118 1'(—o f2(0) (=0 i{¢9! V(-0
.00 .5642 .5642 — 1410 —.1410 —.0176 —.0176
.01 .5641 .5641 —.1410 —.1410 —.0176 —.0176
.02 .5640 .5640 ~ 1409 —.1409 —.0177 — 0177
.04 5633 .5633 — 1404 — 1404 —.0177 —.0177
.06 .5622 .5622 - 1395 — 1395 - .0178 —.0178
.08 .5606 .5606 — 1384 1383 —.0179 — 0179
.10 .5586 5586 — 1370 — 1367 —.0180 — 0180
12 .5561 .5561 — 1352 — 1348 — .0180 —.0182
.14 .5532 .5532 — 1332 ~ 1326 —.0182 —.018¢
.16 .5499 .5499 — 1309 —~ 1300 —.0186 —.0188
.18 5462 .5462 ~ 1283 —.1271 —.0188 — 0193
.20 .5421 .5421 —.1255 ~ 1239 —.0190 — 0200
.30 5156 .5156 —.1083 ~.1031 —.0201 —.0225
.40 .4808 L4808 ~ 0874 — 0760 —.0216 - .0255
.50 .4394 .4304 —.0650 — 0448 —.0235 — 0300
.60 .3936 .3936 —.0430 ~.0121 —.0265 — 0345
.70 .3456 .3456 —.0230 .0195 —.0250 —.0350
.80 .2975 .2975 —.0061 0478 —.0218 —.0320
.90 .2510 .2510 .0070 .0708 —.0171 —.0205
1.00 .2075 .2075 .0165 .0875 0118 —.0100
1.20 .1337 .1337 L0246 .1011 .0072 0100
1.40 .0795 .0795 .0233 .0927 L0031 .0260
1.60 .0436 .0436 L0176 0722 L0015 0435
1.80 .0221 .0221 0114 .0491 0028 .0480
2.00 .0103 .0103 .0065 .0207 .0018 .0410
2.20 .0045 0045 .0033 L0160 0007 .0350
2.40 .0018 .0018 .+ 0015 L0078 L0004 L0220
2.60 .0006 .0006 .0006 .0035 .0002 0105
2.80 .0002 .0002 .0002 .0014 .0001 L0050
3.00 .0001 .0001 .0001 .0005 .0001 .0008

The first three approximations to the functions f(¢), f'(¢) and (¢} have been com-
puted to six significant figures. Values of f,(¢), fi(¢) and f2'(¢), (¢ = 1, 2, 3) are tabulated
in Tables 1 and 3 with four significant figures.

3. Accuracy of the solution. The convergence of the series given by Eq. (5) could
not be formally established, owing to the complexity of the relative terms. Practical
indications about the rapidity of the convergence, however, are derived by comparing
the results with those of some exact solutions obtained with the D12 Differential Analyzer
presently in operation at the Centro di Calcolo Elettronico of the University of Naples.

The following indicative values for A were considered: A = 0.2678; A = 0.4796;
A = 0.5541; X = 0.6915. Comparison was extended to the following physically meaningful
quantities:

i) f/(0), (proportional to the component u of the velocity along the £-axis);

'These calculations are part of a larger program of high speed machine solution of turbulent mixing
flows sponsored by the United States Air Force through the Air Force Office of Scientific Research,
Air Research and Development Command, under Contract AF 18(600)-693, Project No. 17500. The ,
cooperation of Prof. Giorgio Savastano, Associate Director of the C. C. E., is gratefully acknowledged.
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ii) 1(0), (proportional to the shear stress along the z-axis);
i) lim;... [{f’ — f], (proportional, for ¥ = 0, to the y-component of the velocity
at the edges of the wake).

Values obtained from the exact solutions and from the first, second and third approxi-
mations to the function f({) are listed in Table 4.

TABLE 4

Comparison between exact and approximate solutions

Exact I Approx. II Approx. III Approx.
A = 0.26783
1'(0) 0.8698 0.8661 0.8693 0.8697
17(0) 0.1406 0.1511 0.1410 0.1407
lim [¢f — f] 0.0762 0.0755 0.0764 0.0762
$+o
lim {¢f ~ f] 0.0865 0.0755 0.0847 0.0862
{-
A = 0.47961
7(0) 0.7739 0.7602 0.7706 0.7730
77(0) 0.2360 0.2706 0.2382 0.2362
lim [¢f — f] 0.1362 0.1353 0.1381 0.1368
i+
lim [¢f — f] 0.1765 0.1353 0.1649 0.1734
f+eo
A = 0.55412
(0 0.7421 0.7229 0.7368 0.7406
1'(0) 0.2660 0.3126 0.2693 0.2663
lim [¢f — f] 0.1568 0.1563 0.1600 0.1580
The
lim [¢f - f] 0.2154 0.1563 0.1959 0.2090
I+ .
A = 0.69147
7(0) 0.6870 0.6543 0.6760 0.6833
7°(0) 0.3158 0.3901 0.3227 0.3169
lim {¢ff — f] 0.1937 0.1951 0.2009 0.1971
tee
lim [¢f — f] 0.3003 0.1951 0.2567 0.2822
-

The following comments are proper:

(1) The best agreement is obtained for f”/, followed, in order, by f’ and f.

(2) The accuracy decreases with X and, for a given ), is greater for ¢ large than for
| —¢t | large.

(3) The y-component of the velocity at the lower edge of the wake always exhibits
the maximum percental error.

(4) The first two approximations are more than satisfactory up to values of A = 0.5.
The errors in '(0) and f/(0) are less than one per cent.

(5) Three terms of the series are needed for values of X greater than 0.5. With three
terms the errors are nearly always contained within less than one per cent up
to A equal to 0.7. The only exception lies again in the value of the y-component
of the velocity at the lower edge of the wake. The approximate value is 6%
smaller than the exact one.
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ArpENDIX A

The error function and its repeated integrals. The error function is defined by

2 Y e
e = (—Tj—,gfo et dt (A])
and the complement of the error function, erfe n, by
2 = —t
eﬁcn=1—eﬂn=(m£e dt. (A2)
The nth repeated integral of erfc  is symbolically defined as
i erfe n = f @ efet)dt (> 1) (A3)
with
i° erfe n = erfc 7. (A4)

The functions given by Eq. (A3) are tabulated, up to n = 11, in Ref. [8] for positive
values of the variable 7.

It is of interest to extend the definition of 7* erfe 5 to negative values of 5 as follows
" erfe (—q) = (@ erfe ©) dt, - (A5)

and to see whether it is possible to express them as functions of the known tabulated
values of " erfc 1.

In consistence with the notation given in Eq. (A3), the first derivative of the error
function is defined by

d _ 2 .
——E’(erfcn)=zlerfcn=®m<f'- (A6)
It is, apparently, an even function, so that

i erfe (—q) = ' erfc 9, (A7)
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whereas
i® erfc (—n) = 2 — 1® erfc 7. (A8)
By repeated application of the following recurrence formula {7], valid forn > 1
2ni" erfe n = "% erfc 9 — 297" erfe n (A9)
it is then easily verified that the following general identity holds

i"erfe (—n) = (—D""" erfe 9 + 2 Z [u_‘_(;if] 7 7" erfe (0). (A10)

In deriving Eq. (A10) it has been taken into account that Eq. (A9) yields, for n = 0
2ni” erfe (0) = "% erfe (0)

or

_ 1
1" erfe (0) = ——2"(%70!

Equation (A10) gives the required relation between the repeated integrals of the error

function for negative and positive values of the independent variables. Thus, for instance,
the first three integrals in the negative range of 5 are simply expressed by

1 erfe (—n) = 29 + 1 erfe 9,
1> erfec (—q) = —4% erfe n + 4° + 2¢° erfe (0), (A1D)
® erfc (—n) = ¢° erfe n + 297° erfe (0) + 7°/3.

Apparently these repeated integrals will not converge as n — — . Their asymptotic
behavior, for | — | large, is

i erfe (=) ~ (=1 ¢ ),,z 0 )m T2 Z [‘—i(—i”—} L ere (0). (112

ArPENDIX B
Repeated integrals of the functions (i" erfc 7)°. Let the successive integrals of the
functions (¢* erfc 7)° be symbolically indicated by
™" erfe p = f G* Y erfc ) dt (m > 0)
(n > 0)

(B1)

with
i%" erfe n = (3" erfc 5)°. (B2)

It is desired to express these functions in terms of the repeated integrals of the error
function.

The relationship is immediate for the two particular cases: n = —1 (m any positive
integers) and m = 1 (n > 0).
Indeed when m = 1 and n = —1, it is by definition

ji_‘ erfc n = f [—(r—)21—/§ 6_“] dt, (B?))
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so that [see Eq. (A3)]
/2
ji erfe g = (7%) erfe [7(2)7]. (B4)

Repeated integrations easily yield the required relation between j™i~' erf¢ 7 and
the repeated integrals of erfc 5 as

Bl i erte (n@7) ®5)

.1

3™ erfe n =

A corresponding expression, valid for m = 1 and any n > 0 can be obtained by
repeated integrations by parts. As it is easy to verify, the following identity will result

= h+1 [2(n - h + 1)]!n!2h—1 (.,,_;,

s-n — —_ . n—h+]
ji" erfe n = ;( 1 (2n+1)!(n—h+l)!'l erfe 57 erfe 7
(B6)
Rl ot 2 1 —~1/2 n!21/2+n o 9)172
= A erfe ) o (=170 g erfe ()l
In deriving Eq. (B6), the following identity
j i erfe n = —% (7" erfe 7)° = 20" erfc n-7"7" erfc y B
which constitutes an obvious extension of the definition (B1) to the case m = —1,

has been taken into account.

In the most general case use must be made of a recurrence formula. This formula
can be derived by successive and repeated integration by parts of Eq. (B1). By taking
Eqg. (A9) into consideration one obtains

@2n + m)j™i" erfe n = " W erfe g — 73" ' erfe g — 7077 erfe g (BS)

valid form > 1and n > 0.

The recurrence formula (B8) together with Egs. (B3) and (B6) afford a rapid com-
putation of the functions j"7" erfc 5. Their extensions to negative values of the argument
are readily accomplished by means of Eq. (A10).

The first few functions j"2" erfc 4, are explicited and their values at n = 0 are given.
A simplified notation such as

i erfc g =7

(B9)
™" erfe g = §™"
is adopted. Thus
20 01 0\2 Z 20 1/2
it = = @ = (2) e,
(B10)

710 = 1@ — L95° — @727,
ji = 3i° — () — &0,

D - . 2 -0
71 =% — I — T,
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and
O = @72 - @), 40 =1 -2,
" (B11)
Bi(0) = @U@ — 1], 47%40) = 1 - }- :

To conclude, the integral

T,.(n) = [ 1" erfc t-1" erfc ¢t di (n > m)

will be evaluated.
Repeated integrations by parts and consideration of Eq. (B6) yield

— h h
T onln) = (—212— [ erfe n)*) + 2 (=1)"7'["* erfe n-i" " erfe q] (B12)
when n — m = 24 + 1, and
) .
Toln) = (=D erfe n + D (— 170" erfe 937"  exfe 9] (B13)

whenn — m = 2h.

2 &



23.

00
y/F (1" erfc t-i" erfc t)dt (B1)

n

This appendix is devoted to a summary study of these functions
to be referred to as the repeated integrals of the functions
(inerfc'q )2. The existence of a recurrence formula will be proved,
expressions relating to the subject functions to the known repeated
integrals of the error functions will be given, and the integral
given in Egq. (Bl) will be evaluated.

Iet the successive integrals of the functions (inerfc 'n)2 be

symbolically indicated by:

00
jminerfc n= f jm_linerfc tdt (m>0) (B2)
n
with
on n '
jierfcn = (i erfcm)? (83)

It is desired to express these functions in terms of the repeated
integrals of the error function. This is almost immediately done for
the two particular cases: n = -1 and m = 0.

Tndeed when m = 1 and n = -1, it is by definition:

o0
=1 2 -fa
ji erfcn=f (7—-3 )* dt
M

7
so that (see Eq. A3)

ji-lerfcn = @erfc ("'}\/—2_) (BY4)
AT

Repeated integrations easily yield the required relation between

jmi-lerfc T\ and the repeated integrals of erfc m as:
. Dy
j i-lerfc-q='\-4.:_—____— i “erfet/2) (B5)
N
A corresponding expression, valid form =1 and any n > O can

be obtained by repeated integrations by parts. As it is easy to verify,



2k,

the following identity will result:

n+l h+1 hel (
.n _ [2(n-h+1) J7¢ 2"""n¢ | n-h n-h+1
Ji'erfen= % (-1) (2n+1)!éL-h+1)! ﬁ i erfecm-* i erfen +

h=]1 .
(B6)
n-h+l o) n+1_n+d _
- (1 erfen )’ +(-1) 2 “°n! 1 erfc (MW 2)
: T —
P (2n+I)0 »\/‘K
In the most general case use must be made of a recurrence
formula, This formula can be derived by successive and repeated
integration by parts of Eq. (B2). Taking Eq. (A9) into considera-
tion one obtains:
n - - m n-
(2n+m) ierfem =3 ™ 21Perfem -n linerfcn - 12 Lerre n (87)

valid for m 2 1 and n > 0O, In deriving Eq. (B6), the following
identity

-1 n -
j ierfemn= - af]_ (i"erfc m)? = 2iPerfemn* 1" Lerfen (8B8)

which constitutes an obvious extension of the definition (B2) to
the case m = -1, has been taken into account.

The recurrence formula (B7) together with Eqs. (B5) and (B6)
afford a rapid computation of the functions jminerfc'n. Their ex-~
tensions to negative values of the argument are readily accomplished
by means of Eq. (Al0) .

For later reference, the first few functions jminerfc n » are

explicit and their values at m; =0 are given. A simplified notation




such as

i%erfcm = 1°

Filerfe m = 4P

is adopted. Thus:
o_ ,0,=1 (o] J2 .0 V2%
i"™=311 - i =% _ i"(n/2
J n (1°F = (mv/2)

P1% 1 (1°F -zmi° - 3 F= 1 (n/2)

1 1, e
a=3 1° - 3n() -%jio

3 1 1
Ji=35@1) -7 nu-73%°

and
o ::2"‘\/5 2.0 =&_—}—
ji(O) :/T_ ji(O) ™ X
oy = 1 42 -1 2oy _Llp 1 1
al(o)-g e Jio) = 7 [ = 7
To conclude, the integral:
00
m n
F(ﬂ)=/ierfct-ierfctdt (n >m)
M

will be evaluated,
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(B9)

(B10)

(711)

(B12)
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Repeated integrations by parts and consideration of

Eq. (B6) yield:

1
m+R n-R+1
[i Terfem-i erfen

(B13)

h R-
F(n)= (%1? (1 Perten )3} +R§1(-1)

when n-m = 2h 41, and

h

h [(m+n)/2 - -R+1
F(n)=(-1) ji‘z " e:gfc n+R§1 (-1)R 1 [imnerfc-n P erfcTi]
(B14)
when n-m = 2h,
APPENDIX C

Explicit expressions for some of the functions f3 and of
their derivatives are herein given in terms of the functions
{Merfec { and j™i"erfc ! (see Appendices A and B). The same

simplified notations as those used in Eq. (Bll) are adopted.




First approximation -

-1 . 1

fl_ - [ i- :]
2 o

''-1 .o

fl = i (c1)
2

f"- i— Q-§

1 J

Second approximation -

- . 1 (L_;° £ _1y,3 rly21 _
£ m(z i)+i(2 E)+4[5'¢T i)
2% 1 7l 10,2 142
f 5 17’_(1 Ei 1. E(l) (c2)
-3
e L ® L -1+s2]
2 Jx - 2

Third approximation -

1 A 1
f=F_ +F (-0)f
3 3 3( )l

- © .1 3,1 1
F—-%.[E+§K(§3-1)+(12)2+-2-(m—15-j21)1+

27.
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-1
TR ¢ N €' ol I S g%..mf#’z‘)]
2 Jn 2 2 Niid

oo
{

. [a(tN3at

-F rlo(1)% -2 +3 517+ 1
: 173 [',% - b

N

2

|l= _ (K] e 1 1 2 hagl _ _‘:L.....
f3 FB(oo)f1+A/ﬁ__ [E+2—;r(§ +g2&r_g l)+2«/1';

(1% +J£:) - % F1]

APPENDIX D

In this appendix the solution given by Ggrtlerl is first
outlined and subsequently expressed in terms of the functions

tabulated in Tables I through III.

1

The equation solved by Gortler™ can be written as:

Vit

g +2gg' ‘=0 (D1)

subject to the boundary conditions

g (+00)=1 + A g (—00)=1- A
(D2)

g (0)=1
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wherein:
1
$ U,+U U.-U
go) = ¥ c:ﬂ(%) u=_lE.LA=12
2(£0)? 2 U+,

The third boundary condition amounts to imposing the condition
that the velocity along the streamline through the origin be equal to
the arithmetical mean of the corresponding values of the free streams.
The general solution is given by the series:

g =2 A? gi (D3)
i

wherein the g's can be expressed by:

B = O
- t
g = :/-%-j dtj e b + D, 4 (D)
o o
(o S 3 b
. _
g =ﬁl dt [ e-b db'{ Ty(a) da + Dl.:‘f%r () 2521 % %4

with

+ 00

nli=_=%/ et dbfT(a)da
b

Dy s1” / 4 f *(a) da +/ "badbf 'T.l+(a) da}
(o]

(D5)

+ = -
T, (a) = T.l(a) 2 D3,i-1
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i-1

T.(a) = -2 T n 1
5 = gh+1 gi-h///éi (D5)

4

The first two terms of these series are easily expressed in terms
of the function f and :they should be considered satisfactory to any
purpose since the series given by Eq. (D3) is rather rapidly convergent.

After few manipulations, it appears that:

gl(O') 2f1(0') +0 - 241 f.é(o) (D6)

g'(g) =1+ 2£1(0)
1 1

gl"(c) = Zf:'L'(c)
and

go(o) = 41‘2(0') —erfe0 [ - Vi g %] -1 erfc0 _ u/n f3'(°)

2./ b
V) = Lt -o® 1 1.9
gz(O') = 4f2(0') + e [-—1—( - 5-;\/-1-(. :I
: o2 1.0 1
1t = 4ft1(0) - 2 = - = = = =
gy (@) 2 @) - 20e [n 2 Jm 20/m J (D7)

where erfec 0 and i erfc O are the complementary error function and
the first integral of the complementary error function respectively
(see Appendix A).

By means of Eqs. (D6) and (D7) the first two approximations to
the Blasius function with the Gortler boundary condition can be

easily computed from the values tabulated in Tables I through III.




TABIE I

Blasius Equation With Three-Point Boundary Conditions - Valuetcof fi

¢ £2(8) £ (-0) £,(0) £,(-0)
0 .01 ~.0050 .0050 .0004 - .0006
0 .02 -.0099 .0101 .0009 -.0009
D .04 -.0195 .0204 .0017 -.0032
0 .06 -.0290 .0310 .0025 ~.0034
0 .08 -.0382 L0418 .0032 -.0041
0.10 -.0472 .0528 .0038 -.0052
0 .12 -.0559 L0640 .00k4 -.0065
0.14 -.0645 .0755 .0050 -.0077
0.16 -.0728 .0872 .005k4 -.0090
0.18 ~.0809 .0991 .0058 -.0104
0.20 -.0888 1112 .0063 -.0118
0.30 ~.1250 .1750 .0078 -.0196
0.40 ~.1560 .2440 .0075 -.0295
0.50 -.18227 31772 .0069 -.0381
0.60 -.20413 .39587 .0056 -.0503
0.70 ~.22205 47795 .0037 ~.0610
0.80 ~23651 56349 .0016 -.0705
0.90 -.24799 .65201 - 0005 ~.0778
1.00 ~.25697 74303 -.0024 -.0867
1.20 -.26907 .93093 - .0060 -.1017
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TABLE I (contd)

Blasius Equation With Three~Point Boundary Conditions - Values of fi

¢ £1(0) £,(-0) £,8) £,(-0
1.40 -.27576 1.12434 -.0085 -.1126
1.60 -.27921 1.32079 -.0102 -.1199
1.80 -.28086 1.51913 -.0112 -.1238
2.00 -.28161 1.71839 -.0117 -.1268
2.20 -.28191 1.91809 -.0119 -.1280
2.40 -.2820 2.1189 -.0120 -.1286
2.60 -.2821 2.3179 -.0121 -.1288
2.80 -.2821 2.5179 -.0121 -.1289
3.00 -.2821 2.7179 -.0121 -.1289




Blasius Equation with Three-Point Boundary

TABIE II

Conditions -

33.

Valuesof f{

¢ £1(0 £160 10 £,(-0 £5(8) £2(-0)
0.0 -.5000 -.5000 Ol5k Ol 54 .0222 .0222
01 -.4943 ~.5056 NI 0468 .0221 .0223
.02 -.4887 -.5113 L0426 .0482 .0219 .0226
Ob - 477h ~.5225 .0398 .0510 .0215 .0228
06 - .l4662 -.5338 .0370 .0538 .0211 .0231
.08  -.4550 -.5450 L0342 .0566 .0208 .0236
10 -.4438 -.5562 L0314 <0594 .0205 .0240
Jd2 0 - 4326 - 5674 .0287 .0621 .0201 L0244
A4 4215 -.5785 .0260 .0648 .0198 .0248
16 -.4105 -.5895 L0234 L0674 L0194 0253
18 -.3995 -.6005 .0218 .0700 .0190 .0260
.20 -.3886 -.6113 .0183 .0725 .0186 .0264
.30 -.3357 -.6643 .0080 .0839 .0166 .0283
40 -.2858 -.7142 -.0033 .0929 .0147 .0304
50 -.2397 -.7602 -.0109 .0990 .0123 .0338
60 -.1981 -.8019 -.0163 .1018 .0098 .0371
770 -.1611 -.8389 -.0195 - .1014 .0075 .0406
.80  -.1289 -.8710 -.0210 .0980 .0052 0438
.90  -.1015 -.8984 -.0209 .0920 .0034 .0470
1.00 -.,0786 -.9213 -.0197 0841 .0018 L0479
.20 -.0448 -.9551 -.0154 0648 -.0003 L0476
Lo -.0238 -.9761 -.0105 L0451 -.0011 L0424




34, TABLE II(contd)

Blasjus Equation With Three Point Boundary Conditions - Values of fi'

¢ £1(6) fi(-!) £3¢) £5(-0) £3(8) £3(-)
.60 -,0118 -0.9882 -.0064 .0285 -.0012 .0337
.80 -.0054 -0.9945 -.0035 .0123 -.0009 L0240
2.00 -,0023 =0.9977 -.0017 .0086 -.0005 .0152
2,20 -.0009 -0.9991 -.0008 L0041 -.0003 .0081
2.40 -.0003 -0.9996 -.0003 .0018 -.0001 .0038
2.60 -.0001 -0.9999 -.0001 .0007 -.0001 .0018
2.80 .0000 -1.0000 .0000 .0003 .0000 .0006
3.00 .0000 -1.0000 .0000 .0001 .0000 .0000




TABLE IIT

35+

Blasius Equation With Three Point Boundary Conditions - Values of fi'

¢ £1'(0) £, (<) £,"(6) £3'(-0)
5642 . 5642 -.1410 -.14105
.01 5641 . 5641 -.1410 -.1410
.02 [5640 . 5640 -.1409 -.1409
' .5633 5633 - 1404 -.1404
.06 . 5622 -5622 -.1395 -.1395
.08 . 5606 . 5606 -.1384 -.1383
.10 .5586 .5586 -.1370 -.1367
.12 5561 .5561 -.1352 -.1348
.14 .5532 -5532 -.1332 -.1326
.16 5499 - 3499 -.1309 -.1300
.18 . 5462 5462 -.1283 -.1271
.20 L5421 5421 -.1255 -;1239
.30 5156 .5156 -.1083 -.1031
%) .4808 4808 -.0874" -.0760
.50 4394 | L4394 -.0650 -.0u48
.60 .3936 3936 -.0430 -.0121
.70 3456 <56 -.0230 .0195
.80 2975 .2975 - .0061 .0478
.90 .2510 .2510 .0070 .0708
1.00 2075 .2075 .0165 0875
1.20 1337 1337 0246 .1011




36. TABLE III (contd)

Blasius Equation With Three Point Boundary Conditions - Values of fy

t 7' (0 £ (=) £5"(0) £40(-0)
1.40 .0795 0795 .0233 .0927
1.60 L0436 .0L36 .0176 .0722
1.80 .0221 .0221 L0114 .09l
2.00 .0103 .0103 .0065 .0297
2.20 L0045 L0045 .0033 .0160
2.40 .0018 .0018 .0015 .0078
2.60 .0006 .0006 .0006 .0035
2.80 .0002 .0002 .0002 .0014

3.00 .0001 .0001 .0001 .0005
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